
AD-A130 899 A SOFTWARE SCIENCE ANALYZER FOR COBOL: REVISION(U) OHIO 1/2STATE UNIV COLUMBOS COMPUTER AND INFORMATION SCIENCE

RES.. K C FUNG ET AL. 1982 OSU-CISRC-TR-83-2-REV

UNCLASSIFIED ARO-17150.3-EL DAAG29-80-K-O061 F/G 9/2 NL

-~iilI-I

i 32

f111125 I4 1

MIPo 04. R ,".T N

TECHNICAL REPOPT 2 P!FP.

-DTIC

B° QP EERECH CE TE

DISTRIBUTION STATEMEtd A 83 07 28 0-43
SAApproved for public relocksol THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

Distributionl Unlimited
AMF,

OSU-CISRC-TR-83-2

A SOFTWARE SCIENCE ANALYZER

K.C. FlING

N.C. DEBNAT11

and

S.H. ZWEBEN

Research supported in part by

U. S. Army Research Office

Contract DAAG29-80-k-0061

S L T C
B 1 f

Computer and Information Science Research Center
The Ohio State University

Columbus, OH 43210

DISTRIBUTION STAfTEMN A

ApproVed for puI-IiC r.A]oU.So
Di3tribution Urilmt' A Revised Autumn 1982

ABSTRACT

-An analyzer of COBOL programs which
computes the metrics from software

science is described. The report discusses the overall design of the

analyzer, including detailed descriptions of each of its modules. It also

contains instructions for the use and maintenance of the analyzer at Ohio

State University,

AceC~. t-

V T

By---

Av~~dO

Dis Speciakl

I

PRUZACE

This report is the result of research supported in part by the U. S.

Army Research Office of Scientific Research under contract

DAAG29-80-k-0061. It is being published by the Computer and Information

Science Research Center (CISRC) of the Ohio State University in conjunction

with the Department of Computer and Information Science. CISRC is an

interdisciplinary research organization whicu consists of the staff,

graduate students, and faculty of many University departments and

laboratories.

iii

fIDEx TERms

Software Engineering, Software Metrics, Software Science, COBOL

iv

TABLE OF CONTENTS

Abstract .

Preface ..

Index Terms ... iv

Chapter 1: INTRODUCTION 1

Chapter 2: OVERVIEW OF THE DESIGN OF

THE COBOL ANALYZER 3

2.1 Program Structure 3

2.2 Internal Data Structure 7

2.3 Structure Chart 14

2.4 Description of Major Modules 19

Chapter 3: USE OF THE COBOL ANALYZER 23

3.1 Default I-lode 24

3.2 User Defined Operators and Operands 28

3.3 Output of the Analyzer 37

Chapter 4: SUMMARY ..39

References: .. 40

V

APPENDIX-A: DESIGN DOCUMENT 41

Module CNTPI1 42
Module INITIAL*..................... 43
Module INITI.A2 45
Module INITBLD 46
Module SCRNKWDo.............. 47
Module ACTION48
Module SURCH 50
Module INSERT 51
Module COMPARE 52
Module FREETKN 53
Module COUNTDD 54
Module GETOKEN 56
Module GETNBLKo............. 57
Module GETCHAR 58
Module CUTOKEN 59
Module RECEDE 60
Module OPERATR 61
Module NOISE 62
Module OPERANDo................. 63
Module COUNTPD 64
Module BLDTKNo................. 66
Module FILTER1 67
Modu le F ILTER2 69
Module FILTER3 70
Module STAT 71
Module REORDER 73

Module INSERT2o..... 74
Module SORT8 76
Module SOFTHET 77
Module PRNTWID 78
Module TRAVERSEo............................ 80
Module NODE-OUT 81
Module REPORT 82
Module PRINTI 83
Module GETOKOo...................... 84
Module GETK.AB.O.................................85
Module GETOKi 85
Module GETRARIo86

vi

Appendix-B: FILE DESCRIPTIONS 87

B.1 Default Operator File for Data Division...88
B.2 Default Noisevord File for Data Division..89
B.3 Default Operator File for Procedure Div...90
B.4 Default Noisevord File for Procedure Div..93
B.5 File INITW 93
B.6 File INITR 94
B.7 Production JCL (OSUCNTPM) 94
B.8 JCL INTERNAL.-.............................95
B.9 Production JCL (WIDJET) 95
B.lO ANALYZE Command EXEC Program.............. 97
B.11 Sample Handout.......................... 98

Appendix-C: MAINTENANCE PROCEDURE 99

Appendix-D: INVOKING THE PURDUE ANALYZER AT IRCC......... 106

D.1 JCL Required to Run the Purdue Analyzer..106
D.2 Output of the Purdue Analyzer............ 108
D.3 Comparison of OSU and Purdue Analyzers...ll0

vii

CHAPTER 1

INTRODUCTION

It is a major theory of software science (Halstead 77) that if we

divide the basic eleaents of a given program into operators and operands

according to a proposed counting strategy, the statistics of these

operators and operands exhibit some interesting relationships to aspects of

software quality. It is hopeful that these relationships can form a

quantitative basis for the analysis of software. In order for this

approach to gain widespread acceptance, it is necessary for these

relationships to be validated on different classes of programs.

Halstead (Halstead 79), in a treatise of software science research,

cites many studies which have sought to validate these relationships on

programs written in many languages. Interestingly, though, none of these

analyses involve COBOL! More recently, (Zweben and Fung 79) reported on

the results of a preliminary study of COBOL programs which were counted

manually. However, in order to gather large amounts of data on COBOL

programs it is necessary to be able to count the operators and operands of

COBOL program& mechanically. The computer program (or analyzer, as it acts

almost like a lexical analyzer for COBOL) described in this report is the

result of such an effort, undertaken at The Ohio State University, to

streamline the counting process for the study of software science metrics.

It should be mentioned that a Software Science research group at

Purdue University has developed another COBOL analyzer (Shen and Dunamore

80). The Purdue University analyzer is written in COBOL whereas the Ohio

State University (OSU) analyzer is written in PL/I. Both the analyzers are

capable of handling Data as well as Procedure divisions of a COBOL program,

as has been recommended by (Zweben & Fung 79). In addition, both programs

allow users the option of providing their own definition of COBOL operators

and operands. In particular, the OSU analyzer offers the added feature of

context sensitive counting of various keywords, as will be discussed in

this report.

The next chapter describes the overall design of the OSU analyzer,

and is intended for readers who may wish to study andior modify the actual

programming details. Chapter 3 provides the details of how to use the

analyzer, either in "default" mode using a predefined counting strategy, or

with user provided definition of COBOL operators and operands. A brief

discussion about the future work to be done using this analyzer has been

outlined in Chapter 4. For completeness of the report, four appendices are

included. Appendix-A provides the explicit design document for the entire

analyzer program. A detailed description of the existing files related to

the analyzer is given in Appendix-B. In Appendix-C, a short procedure for

maintaining the analyzer is mentioned. Finally, the procedure for invoking

Purdue's analyzer at OSU has been explained in Appendix-D.

CiAPTER 2

OVEVIEW OF Ti DESIGN OF 'TIIE COBOL

AI. ALYER

2.1: Programa Structure

The strucure of the analyzer is based of the data structure of the

Loken stream of a COOL source program, which
can be pictured as iollows

(using a Jackson design notation [Jackson,
751):

/sour'e

IRe e'-° o°n- °0

°°°i~ wor -- eOe a worse O0perandl Paragraph

Name

r4
Nonreserved words are program.er defined symbols and in general all

nonreserved words except paragraph names are operands. Paragraph names are

identified by their location (beginning in Col. 8) in a source language

stateient. Reserved words are language (compiler) defined symbols and they

are usually well documented in the language manual. lost COBOL reserved

words function as operators but some function as optional symbols to make

the sentence structure more English like. In the usual counting strategy

of software science, these optional syubols are ignored and are thus called

noisewords. Somie operators are context sensitive ad additional actions

are needed to identify and process them. Since reserved words can be

defined precisely with the help of a language manual, operands (nonreserved

words) of a given source program can be identified by checking against the

list of reserved words.

The analyzer can be viewed as having the following four uajor phases.

INijITAL-11A---lbT~

rE -) -2-

The data structures used as input/output to each of the phases are the

following.

1. Predefined operator and noisevord files.

2. List and Tree structures of operators/noisewords.

3. COBOL source program

(a) Token list of the COBOL source program

(b) Operator/operand tree for the data and procedure

divisions of the program.

4. Report of the Software Science metrics.

Initially, information about reserved words is used to build operator

and noiseword trees (module INITIAL & INITIA2). This information consists

of names of reserved words, alternative forms of these words (synonyms),

and any context sensitive information concerning their use as operators.

The input character stream of the source program is then broken down into a

token stream (module BLDTK3 & GETOKEN). Every token is first processed

against the operator tree (module OPERATR & FILTERI). If it is not an

operator, or if the operator tree provides no synonym or context sensitive

information to determine how to deal with the token, it is processed

against the noiseword tree (module NOISE & FILTER2). If it turns out to be

none of the above, then the token is considered to be an operand and thi

information is entered into the operand tree (module OPERAND & FILTEE3).

After all the tokens are processed and the information concerning their

classification is built into the appropriate trees, a module STAT is

invoked to generate all the relevant statistics and the final output.

... l l L I . . .IA

Note that two modules exist for each process other than the statistics

generation. One module performs the process for the DATA division and the

other performs the corresponding process for PROCEDURE division.

The program structure is best described by the following high level

routine (used in the program though details have been deleted here for

clarity).

INITIALIZE DATA STRUCTURES ; /* Call INITIAL and INITIA2 */

DO WHILE (-i END OF PROGRAM);

CAPTURE A TOKEN ; /* Call GETOKEN or BLDTN */

COTARE THE TOKEN AGAINST THE DEFAULT OPERATOR TREE ; /* Call OPERATR or FILTER!.

IF THE. TOKEN IS AN OPERATOR

THEN

PROCESS THE TOKEN AS OPERATOR

ELSE

COMPARE THE TOKEN AGAINST THE NOISE TREE ; /* Call NOISE or FILTER2 */
IF THE TOKEN IS (- OPERATOR AND -i NOISEWORD)

THEN

PROCESS THE TOKEN AS AN OPERAND ; /* Call OPERAND or FILTER3 */

END ;

PRODUCE THE ANALYZER REPORT ; /* Call STAT */

A characterization of the ma'or data structures used by the program, a

structure chart, and a description of major modules are given in the

remaining sections.

2.2 Internal Data Structures

Functionally there are six linked list structures in this program.

One uses a binary tree structiire, four use a linear list structure and the

remaining one uses a circular linked list structure.

Binary Search Trees

There are three important examples of the binary tree node structure

in the analyzer. These are the operator, noise, and operand trees.

Operator tree

Rootl

MOVE

ETO

Noise tree

o t

S KI P2

EJECT TH.AN

SIi

Operand tree

Root3

MA R

DONA TIM

The nodes in a tree are related to each other in lexicographic order

of the symbol with respect to the alphabet set used by the local computer

(e.g. EBCDIC). Each node contains information about the frequency

occurence of its token at the current point of the analysis (see the node

structure below). After the trees are completed it is a simple matter to

derive the software science measures ETA1, NI, ETA2, N2, and the frequency

distribution of the operators and operands (see STAT under Section 2.4).

Structure of a node of the operator, noise, and operand trees

freq D
counter L

left link
associ:ate

token pointer right link

pointer

In the analyzer the PL/l declaration for this structure is:

DCL 01 TREENODE BASED (current),
02 LPTR POINTER,
02 RPTR POINTER,
02 ASSOCIATE POINTER,

02 TKNPRT POINTER,
02 FREQCNTR POINTER,
02 DLMFLAG BIT (1);

In general, left-link and right-link help to define the tree

structure mentioned above; token pointer points to an internal list

structure of the token associated with the node (token list described

below); associate pointer leads to an associate list which contains

context sensitive information about the token, if there is any;

freq-counter contains the occurrence frequency of the token; and DIM

(delimiter) is a flag used for a variety of purposes, one of which is

to indicate whether a particular operator is a COBOL verb.

Token List

The tokens are represented internally by a linear list structure.

Each node contains two adjacent characters of a token. In general a

token of length x requires (x/2+l) nodes for its internal

representation, and the token pointer of a tree node points to the

first node of this list.

token pointer

Jnetpointer

Synonym List

Synonyous tokens are linked up through the synony pointer (3rd

field) in the first node of their token list.

token pointer

syno ym p inte

Associate List

The associate list is used to record context sensitive counting

strategy rules for COBOL keyword tokens. These rules are given as

"action pairs" in the input instruction list (see section 3.2 for the

syntax and semantics of action pairs). A token affecting a previous

token or being affected by a previous token has an associate list node

linked to its tree node. The structure of an associate list node is

similar to that of a tree node. If a token is sensitive to more than

one previous token, additional associate list nodes are linked through

the associate pointer field.

As an example, let us see how the data structure of an associate

list corresponds to the description of the context sensitive

relationship among the tokens 'ERROR', 'ON" and 'SIZE'.

Our counting strategy suggests that in the context of 'ON SIZE

ERROR', 'ON' and 'SIZE' should be counted as noisewords, and the token

"ERROR" repcesenting this string should be counted as an operator.

This can be expressed as the input instruction 'ERROR > SIZE >> ON" in

the file OPERI (see section 3.2 for a discussion -f the syntax of

these input instructions). To implement this instruction (which is an

abbreviation of the two action pairs 'ERROR > SIZE" and 'ERROR >> ON')

we build the associate list as follows.

ERROR > SIZE >> ON

left right
pointer ERROR

The leftmost node in this example is a tree node for the token

'ERROR' and has a frequency count of 15 (arbitrarily chosen). The

other two nodes in the example are not tiee nodes, but are members of

the associate list for the token 'ERROR'. For the 'SIZE' node, the 1

in the frequency field denotes that in the case of 'ERROR' following

'SIZE' by one token, 'SIZE' is considered as a noiseword (positive

value associate with >). The 2 in the frequency field of 'ON' denotes

that in case of 'ERROR' following 'ON' by two tokens, 'ON' should be

considered as the noiseword.

Historical List

This is a circular list which saves the last ten tokens for

backpatching the frequency count of any context sensitive token.

MOVE

** OPEN

Current pointer

13

Special Character List

This linear list links up all special break-characters which are

also considered as tokens. This list is consulted by every incoming

character of the source program. The second character field of the

token node contains a "$ or '?' depending on whether the character is

an operator or noiseword. This list built as the (user defined or

default) operator and noiseword files are read into the analyer.

Single character tokens from these files are special break characters.

Headsngl

II

I,

4 N4

>1 a.

171

44.

00

T V

en0

w z

C4

-4

0

0,

Ow 0

hiz

i 15
! INL 7AL

I

lCNk 7"81 D .D N kWDI

COMPA4RER CO MPARE FR oV 7" XIV

Fig. 2.3b

Note: INITI A2 has the same structure and subrout nes as INITIAL.

LLL

VI-

I-.fr

0 g2
\V.C O

IL L47 V

-4

-JLi

LL

LU
Ge

LiL

La.

Z ac

- CLU
- 1Q1

LUL

LU UL

Qlch

- V.

I-I

727

72~

- U

2.4 Description of Major Modules*:

INITAL (INITIA2): Initializes the fundamental data structures needed for

analyzing the Procedure (Data) division of a COBOL program. In particular,

this module builds operator and noisevord trees according to the input

instructions supplied by user or the default file descriptions. It also

constructs the token, associate and synonym lists.

INITBLD: Captures a token from the input instruction stream and builds a

linked list structure for the token.

SCRNKWD: Screens the keyword (token) captured by INITBLD. If it is a new

member of the operator/noiseword tree then it is inserted into the

appropriate tree. Otherwise the linked list structure of the token is

freed.

ACTION: Processes the action pairs (see Section 3.2) fren t-e input

instructions. These action pairs define synonyms and context sensitive

information.

COUNTDD (COUNTPD): Scans the Data (Procedure) division of a COBOL program.

Each occurrence of a token is classified on the basis of the counting

strategy defined in INITIAZ (INITIAL), and the frequency count of each

unique operator or operand is updated.

GETNBLK: Reads an input record of the COBOL source program starting from

column 8 and returns the first nonblank character in the record.

* A more thorough description of each module is contained in Appendix-A.

GETOKEN (BLDTOKEN): Scans the records in Data (Procedure) division of a

COBOL source program, and captures tokens from the input character stream. I
It also builds the linked list structure for the tokens.

This routine is more powerful than INITBLD in that it can capture a

literal string as a token and it can determine the function of a variety of

break-characters. For example, '-" may be used as a hyphen or as the

subtraction operator, and ".' may be treated as a decimal point in a real

number or as a delimiter.

OPERATE (FILTERI): Processes the incoming token in Data (Procedure)

division against the operator tree of Data (Procedure) division.

If a match is found in the operator tree then increments its

frequency count and frees the storage of the incoming token. Otherwise

passes the token to NOISE (FILTER2).

NOISE (FILTER2): Checks the incoming token against the noisevord tree of

the Data (Procedure) division. If a match is realized in the noise tree

then frees the current token. Otherwise passes it down to next phase,

namely OPERAND (FILTER.3).

OPERAND (FILTER3): The incoming token must be an operand by default. This

module searches the operand tree of Data (Procedure) division in order to

see if a match exists. If a match is found then increments the frequency

count of the current token and frees the token. Otherwise inserts the new

token into the operand tree of the Data (Procedure) division and updates

its frequency count.

STAT: Produces a report of the analysis. STAT makes use of the operator

and the operand trees developed during the early stages. In traversing the

operator tree, the number of unique operators (ETAI) is obtained by

counting the tree nodes having nonzero frequency. The total number of

operands (NI) is found by adding up the values of all the frequency counter

fields. Similar treatment is followed for operand tree in order to find

the number of unique operands and also the total number of operands (i.e.

ETA2 and N2 respectively). This module also produces the frequency

distribution of all the operators and operands in different divisions of a

COBOL program in a sorted order.

REORDER: Sorts the operator and operand trees of the Procedure division as

well as the operator tree of the Data division in order of frequency

counts. It also provides information about ETAI, N1, ETA2, N2 and the

number of statements in the appropriate division.

SORTh: This module is a slightly modified version of REORDER, and is used

to sort the operand tree of the Data division. In addition to the number

of unique operands and the total number of operands in the Data division,

it also calculates the number of common operands between the operand trees

of the Data and Procedure divisions. This number of coimmon elements is

used to find the number of unique operands in the entire program, since the

number of unique operands in the whole program - (sum of the operands in

both Data and Procedure divisons) - (number of common operands between the

Data and Procedure divisions).

VO

SOFTMET: Produces the final values of all Software Science metrics for

Data and Procedure divisions.

PRNTWID: This module generates separate files containing the frequency

distribution of all the tokens in both Data and Procedure division. The

file is broken down into 80 character records, and is composed of node

units. Each node unit corresponds to a token and consists of a 3-byte node

length, a 4-byte frequency count, and the token symbol of up to 256

characters.

REPORT: Reads three different files, namely, SYSUTO, SYSUTI and SYSUT2

generated by PRNTWID and STAT. SYSUTO, SYSUTI and SYSUT2 contain all

information from Data division, Procedure division and the program,

respectively, necessary for producing the desired output. It generates a

report of Software Science metrics. The frequency distribution of tokens

in Dari : ' Procedure divisions are displayed in parallel. Summary

accounts of Data division, Procedure division, and the entire program are

dLsplayed at the end (see section 3.3).

CHAPTER 3

USE OF THE COBOL ANALYZER

In order to obtain Software Science measures, a set of unambiguous

rules which defines the partition of symbols into operators and operands in

a language is required. Different authors may come up with slightly

different rules for the same language, even if the same language compiler

is being used. The discrepancies are often due to disagreement of

interpretation of the definitions of operator and operand given in

(Halstead 77). An operand is defined as a "variable or constant" in a

program. An operator is defined as "a symbol or combination of symbols

that affect the value or ordering of an operand" in a program.

To allow for changes in the counting procedure by different users, the OSU

analyzer allows the option of invoking a predefined set of rules or

defining a new set of rules. Section 3.1 describes the former option, and

Section 3.2 discusses the latter.

3.1 Default Mode

The counting strategy used in this analyzer considers entries in both

Data and Procedure Divisions. It is governed by the following rules:

1. OPERANDS (Data and Procedure divisions).

Any reference to a distinct operand is counted as an occurrence

of that operand. An operand is any of the following:

a. A file-name, e.g., CARD-INPUT-FILE.

b. An identifier, e.g., EMPLOYEE-NUMBER.

c. A literal, e.g., 'BILL' or 1234.

A paragraph name or section name is not considered as an

operand. Together with PERFORM or GO TO it is considered as an

operator.

2. OPERATORS (Procedure Division).

Any reference to a distinct operator is counted as an

occurrence of that operator. An operator is any of the following:

a. A logical operator, e.g., OR, AND.

b. A relational operator, e.g., -, EQUAL, LESS THAN.

c. An arithmetic operator, e.g.,+,-,* and 1.

d. A key word or required word in a valid COBOL statement with the

exception of GO TO, PERFORM, CALL and ALTER. Any group of keywords

functioning as an operator is counted as a single operator. Examples

of such keywords or keyword combinations are: IF, ELSE, NEXT

SENTENCE, UNTIL, AT END, READ, and OPEN.

i5

e. Noisewords are not considered as operators, and are ignored in

the counting.

f. A transfer of control: Any transfer of control to a paragraph

name, section name or subprogram name is counted an occurrence of the

operator associated with that name, e.g., GO TO paragraph-i, GO TO

paragraph-2, and PERFORM paragraph-I are all distinct operators.

g. A parenthesis pair e.g., A - (B - C) h~s one occurrence of the

operator denoted as 'parenthesis pair'.

3. OPERATORS (Data Division).

All keywords/required words in a valid COBOL statement are

considered as operators e.g. FD, BLOCK, VALUE, REDEFINES, PICTURE

etc.

4. Each occurrence of a COBOL verb adds one to the count of the

operator denoted as, 'end of statement.

5. Periods, commas and semi-colons are not counted.

Complete lists of the operators and noiacwords for both Data and

Procedure divisions, based on ANSI COBOL 1973 and including language

extensions from IBM OS Version 4, are shown in appendix-B. The order of

the records is so as to create well balanced tree structures for the

analyzer (see Chapter 2 for details concerning these structures), with an

effort to put more frequently occurring entities near the root of the tree.

To run a job at Ohio State's Instruction and Research Computer Center

(IRCC) using default mode, the following sequence of inputs is required:

I/jobname JOB ...account number...
//PROCLIB DD DSN-TSO618.PROCLIB,DISP-SHR

II EXEC OSUCNTP
//SOURCE DO *

(source program)

/*
//

The JCL file , OSUCNTPM, used to run the analyzer is listed iii
Appendix-B.

It should be aoted that currently the students of different
COBOL courses at OSU use 'i!DJET and WYLBUR on-line systems to run
their jobs on the AMDAHL 470. WIDJET and WYLBUR users utilize the
following set of JCL to run the analyzer.

// JOB
/*JOBPARM V-D

//PROCLIB DD DSN - TS0618.PROCLIB
// EXEC INTERNAL
/PROGRAM DD *
$JOB xxxxxx student-name

COBOL SOURCE PROGRAM

$ENTRY

Where xxxxxx corresponds to 2-digit LAB-ID and 4- digit AUTHOR-ID.

It

Unlike "OSUCNTPM', this JCL allows the analyzer to gather outputs into

a separate disk file (see Appendix-C). The detailed structure of INTERAL

and other necessary JCL invoked by INTERNAL are given in Appendix-B.

It is worth mentioning that recently an EXEC program has been

developed which allows students to run tae analyzer more conveniently,

while keeping tae aualyzer secure from student modC.fcation. The entire

EXEC program listing is also included in Appeuix-B for completeness.

Because of the present facility, the students n.ed to use only a simple

command (called ANALYZE) to run their program through the analyzer instead

of using the JCL given above.

3.2 User Defined Operators and Operands

It is also possible to run the analyzer with user defined operators

and operands. When using the analyzer in this mode three input files are

required. They are each discussed below.

Source Program

DDname: SOURCE

This file contains the COBOL program to be analyzed. Each record is

80 bytes long and corresponds to a line of the source program. The size of

the source program is not limited by the analyzer but by the memory

available because operand storage is dynamically allocated and freed.

Currently only one source prbgram can be analyzed in one execution.

Operator File

DDname:OPER

This file contains the definition of operator for the counting

strategy. Each record is 80 bytes long.

The syntax of an operator file is:

[.1 keyword-I [relation keyword-2]

The period before keyword-I is optional. Its occurrence indicates

that keyword-i should be considered as a COBOL verb. Since a COBOL

statement is delimited by the verb of the next statement, counting the

verbs of COBOL is an indirect way to count the number of statements in the

source program.

Keyword-I is a symbol to be considered as an operator in thL :ountin,,,

strategy. If keyword-i has been registered before, it is not registered

again.

The 'relation keyword-2' pair is optional. Its presence indicates

that a certain action is to be performed in the context of keyword-I and

keyword-2. Multiple action pairs signifies multiple actions on keyword-I.

The kind of action to take place is defined by the relation of the

instruction as follows:

means that keyword-2 is to be considered as a synonym of keyword-i.

They are to be treated as equivalent tokens in the counting strategy.

">' means that on encountering keyword-i, if the most recent token is

keyword-2, keyword-2 is to be considered as a noiseword.

"<' means that on encountering keyword-i, if the most recent token is

keyword-2, keyword-i is to be considered as a noiseword.

%W means that on encountering keyword-i, if the second most recent token

is keyword-2, then keyword-2 is to be considered as a noiseword. Up to six

multiple ">' may be used, implying that backtracking by six operators is

possible.

I<<"means that on encountering keyword-i, if the second most recent token

is keyword-2, then keyword-i is to be considered as a noiseword. Up to six

multiple "<' may be used.

I

One easy way to recognize which keyword is to be considered as a

noiseword is to look at the 'point' of the relation. The relational

operator always points at the noisevord.

e.g. Keyword-I >>>> keyword-2 << keyword-3

The first relation points at keyword-2; thus keyword-2 is to be

considered as a noiseword. But the second relation points at keyword-I;

thus in the context of keyword-I and keyword-3, keyword-I is to be

considered as a noiseword. Note that this input record does not define any

relationship between keyword-2 and keyword-3.

By entering into the operation file a list of relation - keyword

pairs, the user of this analyzer may define the operators and operands of

his counting strategy based on information obtained from the language

manual supplied by the vendor.

I

Examp le I

Different versions of a COBOL compiler may have different

repertoires of reserved words. The counting program used under different

COBOL compilers must reflect this variation through entries into the

operator file. For example, reserved words that begin with the letter 'b'

unaer two popular compilers have the following difference.

1974 ANSI COBOL 1973 IBM OS Version 4
before basis
blank before
block beginning
bottom blank
by block

bottom
by

In switching from ANSI COBOL to the compiler for IBM Version 4, two

keywords, 'basis' and 'beginning', are to be added into the operator file.

That is, suppose the entries for reserved words that begin with the letter

'b' under a 1974 ANSI/COBOL compiler are (n cards existing before these

en:res):

111111111
column 123456789012345678...

Card n+l BEFORE
Card n+2 BLANK
Card n+3 BLOCK
Card n 4 BOTTOM
Card n+5 BY

Then the entries under a 1973 IBM OS Version 4 compiler become:

111111111

column 123456789012345678...

Card ndl BEFORE
Card n+2 BLANK
Card n+3 BLOCK
Card n 4 BOTTOM
Card n+5 BY
Card n+6 BASIS
Card n+7 BEGINNING

Example 2

According to the DEC-10 Version 4 COBOL compiler, the use of the

EXAMINE verb should follow the general format:

ALL
EXAMINE identifier TALLYING LEADING Literal-I

UNTIL FIRST
[REPLACING BY literal-21

Underlined capitalized words are considered as keywords. Capitalized

words which are not inderlined are considered noisewords. To define

lexical units according to the above general format the following cards are

entered into the operator file.

.EXAMINE

ALL < TALLYING

FIRST < UNTIL

BY < REPLACING

The period before 'EXAMINE' instructs the analyzer to consider every

occurrence of 'EXAMINE' as an occurrence of an operator as well as an

occurrence of the operator " end of statement'.

'ALL < TALLYING" instructs the analyzer to consider "ALL" as a

uoiseword if its preceding word is 'TALLYING'; otherwise both 'ALL and

'TALYING' are to be considered as operators.

'LEADING' instructs the analyzer to register "LEADING' as an operator.

However, since there is no period preceding it, no occurrence of the 'end

of statement' operator is registered.

'FIRST < UNTILo and 'BY < REPLACING' are instructions which enable the

keyword pointed at to be considered as operator or noisevord according to

context, similar to 'ALL < TALLYING'.

34

Example 3

According to the following general format,

CORRESPONDING
ADD Identifier-I TO identifier-2

CORR

(ROUNDED] [ON SIZE ERROR imperative-statement]

the operator file should include the following cards:

.ADD
CORRESPONDING - CORR
TO
ROUNDED
ERROR > SIZE >> ON

The period before 'ADD' is to instruct the analyzer to register 'ADD'

as a COBOL verb. Thus every occurrence of 'ADD' increments the count of

both 'ADD' and 'end of statement'.

'CORRESPONDING - CORR' instructs the analyzer to consider

"CORRESPONDING" and 'CORR' as equivalent tokens.

'TO' and 'ROUNDED' instructs the analyzer to register these two

symbols as operators.

'ERROR > SIZE >> ON' instructs the analyzer to ignore 'SIZE' if on

encountering 'ERROR' the most recent token is 'SIZE', and to ignore 'ON' if

on encountering 'ERROR" its second most recent token is 'ON'.

Noiseword file

DDname :NOISE

This file contains all the individual noisevords vhich are not

considered as operators or operands at any time during the analysis. Each

individual noiseword is placed on a separate input record (80 bytes long).

Some noisevords are sensitive to context and are considered as operators

only in certain situations. For example, 'TO' is a noiseword in 'EQUAL TO'

but is an operator in 'MOVE X TO Y.' Information of this kind should be

supplied by the user to the operator file (see above examples). The

noiseword file only contains symbols which are always considered to be

noisewords. This set of 'true' noisewords has to be determined before

analysis in order to define the operands of the counting strategy. Any

token which is not contained in the operator file or the noiseword file

will be categorized as an operand.

The following is the JCL required to run the analyzer at Ohio State

University's Instruction and Research Computer Center if user defined

operators and operands are employed:

I

~3 h

//jobname JOB ...account number...
/ EXZEC PGH-OSUCNTPH
//STEPLIB DD DSN-TSO6l8.LOADLIB,DISP-SHR

i/OPER DD*

(operator file)

//NOISE DD*

(noisevord file)

/*

//SOURCE DD*

(source program)

/*
//SYSPRINT DD STSOUT-A
I'

3.3 Output of the Analyzer

The folloving outputs are generated by the analyzer:

- Echoes of the operator file and noisevord file

- List of tokens scanned during the analysis

- Frequency distribution of operators and operands

- Number of unique operators (ETA1)

- Number of operator occurrences (Nl)

- Number of unique operands (ETA2)

- Number of operand occurrences (N2)

- Vocabulary (ETA)

- Program Length (N)

- Estimated program Length (NH)

- Total Number of Statements (NOS)

irogram Volume (V)

- Program Level (LH)

- Language Level (LAMIDA)

- Intelligence Content (INTELL)

- Programming Effort (EFFORT)

A sample of the actual output format produced by the analyzer for the

frequency distributions and metrics sumeary follows.

1

38

0 -4C-4

0 o 00 C,4

00

z I0r

0 C000

0~~ u

0 I K w 0
Il O -

Ln Zl CN) * 00

co eqz0
Z

Z 00 Cc

-I% -4

~~~~ fn~Z -

~~- -4 00 C-4&. U~a



CHAPTER 4

The present form of the analyzer herein, developed by the software metrics

research group at Ohio State University, handles operators and operands in

both Data and Procedure divisions of a COBOL program. The availability of

this analyzer makes it possible to collect a substantial amount of data

from various sources of COBOL programs. These data will provide the

opportunity for more extensive and critical analysis of the Software

Science metrics, and their applicability to such important areas as

programming time prediction and error prediction.

|



40

REFERECES

[Halstead 771 Halstead, E.R., Elements of Software Science, North Holland,

N.Y., 1977.

[Halstead 79] Halstead, N.R., "Advances. in Software Science", in Advances

in Computers, N.C. Yovits, Academic Press, New York, 1979.

[Jackson 751 Jackson, M., Principles of Program Design, Academic Press,

1975.

[Shen and Dunsmore 80] Shen, V., and Dunsmore, H., "A Software Science

Analysis of COBOL Programs", Technical Report CSD-TZ-348, Dept. of Computer

Sciences, Purdue University, August 1980.

[Zveben and Fung 791 Zveben, S.H. and Fung, K.C., "Exploring Software

Science Relations in COBOL and APL", Proceedings of COMPSAC 79, Chicago,

I1l., Nov. 1979, 702-707.



APPENDIX-A

DESIGN DOCUMENT

This appendix provides the explicit description of each individual

module in the analyzer progrin. Included for each module is a detailed

functional description (with a list of subprocesses) and its interfaces

with the other modules in the program.

I



42

Main Module: CMTPQI

Functional Dgscriptiou:

This is the control module of the analyzer.

Subprocesses:

1. Xnitialize history list, natmely six different tree roots.

2. Define the counting strategy for both data and procedure divisions

(INITIA, INIIAL.

3. Get author-ID and program-ED if the programt is to be run for data

collection.

4. Count data division (COUMMD).

5. Count procedure division (COUNTPD)

6. Compute software metrics and print a report (SIA.1).

Interface:

CNr.Cv



OUT IN

1. 1. TOP-1 : Top of the operator tree for Procedure division (PD)

2. 2. TOP-2 : Top of the noise tree for PD.

3. 3. TOP-3 : Top of the operand tree for PD.

4. 4. TOP-6 : Top of the operator tree for data division (DD).

5. 5. TOP-7 : Top of the noise tree for DD.

6. 6. TOP-8 : Top of the operand tree for DD.

10. Final report of the analysis.

7. CIRPTR : Pointer to last token of the circular list.

8. LAB-ID : 2-digit Lab-ID.

9. AUTH-ID : 4-digit author-ID.

Module : INITIAL

Functional description:

Keywords and action pairs in the operator (OPER) and Noise (NOISE)

files define the counting strategy of the Procedure division. This

subprogram translates the counting strategy into operator and noisevord

trees which will be used in the subsequent analysis.

Subprocesses:

1. Capture a keyword from the input record of OPER file and put into a list

structure (INITBLD).

2. Ezamine the operator tree and determine if the keyword has been linked

into the tree. If it is not already present, the new keyword is inserted

into the tree (SCRNKWD).

I



4-4

3. Process each action pair after the keyword. This process involves

capturing the relationship symbol and the associated keyword- and

constructing the associate list that implments the relationships between

two keywords (ACTION).

4. Repeat the above steps with NOISE file.

Interface:

CN TrCrM

iN|T L j qN PD ACTON

OUT I

1. 1. TOP : loot of a given tree (Operator or Noisevord tree for FD).

2. 2. TRIAL-PT: Address of the linked-list structure of the

captured keyword/Uoisevord

3. SCUK'D : Returned tree node of the screened keyvord/noisevord

4. N T-CARD : Current input line image

5. CURSOR : Pointer to the current character in NEXT-CARD



* I

Module: INITIA2

Functional Description:

This subprogram constructs the fundamental data structure needed to

process the data division of a COBOL program. In particular, it translates

the appropriate counting strategy into operator and noise trees for

analyzing the data division.

INITIA2 .Iss exactly similar structural and functional organization as

INITIAL with the exception that INITIA2 uses the operator and Noise files

for data division whereas INITIAL uses the operator and Noise files for

Procedure divisions [see Appendix-BI. The detail module decription for

INITIAZ is omitted in order to avoid repetition.

I



Module :I ITBLD

Functional Description:

This subprogram picks up a token from the input instruction record

and constructs a linked list structure for that token.

Subprocess:

1. Assemble a token string by collecting one character at a time until a

blank at end of card is reached.

2. Transform the token string into a linked list structure.

3. Return the address of the linked list structure.

Interface:

N I -r I AL
A C C7 1 t

OUT 2'

1. NM-CARD : Current input line image

2. CURSOR : Pointer to the current character in next-card.

3. TRIAL-PTR : Address of the linked list structure of the captured

keyvord/unisevord.



' Module: SCRIWD

F'inctional-Descriptiou:

This subprogram determines if the given keyvord/uoisevord captured byI

ENITBLD is a amnew obr or not. If it is an old mem er, the storage of the

given keyvord/uoiseword is freed; otherwise it is inserted into the tree.

Subyrocesses:

1. Traverse the appropriate tree to determine if a match in the tree can be

found f or the given keyword/uoisevord (SURGE).

2. If a match ezists, the storage of the keyvord/noisevord is freed

(FREETIN).

3. If a match cannot be found, the new keyvord/noisevord is linked into the

tree (INSERT).

Interface:

A CTI 09



OUT IN

1. 1. TOP : Root of a given tree

2. 2. TRIAL-PT : Address to the linked list structure of

the keyword/noisevord.

3. SURCH : returned tree node of the matched keyword/

noisevord or "null".

4. SAVE : tree node of the insertion

5. SCRNKWD : returned tree node of the screened keyword/noiseword.

Module: ACTION

Functional Description:

This subprogram captures the relationship symbol (e.g. >>,=, <) and

the associated keyword of the action pairs. It also contructs the

associate-list that implements the relationship between the keywords.

Subprocesses:

i. Capture the first character of the relationship symbol.

2. If the first character is a ", process the next keyword as a synonym

through the synonym list.

3. If the first character is a > process the next keyword as a context

sensitive element through the associate-list.

4. If the first character is a '<', process the next keyword as a context

sensitive element through the associate-list.



1

Interface:

tt

INIIT(AL |~S- N k TI L

OUT 13

1. 1. TOP: Root of the operator/noise tree.

2. TRIAL-PTR: Address of first keyword in the list

structure.

3. 3. INITBLD: Returned address to list structure of the

associated keyword.

4. SCMKVD: Returned treenode of the screened keyvord/noisevord.

5. IP-CARD: Current input line image

6. CURSOR: Pointer to the current character in ET-CARD



Moul: SURcH

Yunctional Description:

This subprogram searches a binary tee by comparing the token

character string associated with each node of the tree until a match is

found or end of search is encountered.

Subprocesses:

I. Compare the given character string with the string associated with the

tree nodes.

2. if both the strings are equal, return the address of the tree node.

3. If the given string is larger, access the tree node on the left.

4. If the given string is smallei, access the node on the right.

5. lapeat the above steps until a match or end of search is encountered.

Interface:

S C R N K W Z (31, 3 R A T I% N C S E P E R A N D i L TI R 1 PI L T G R 2 . R I L " r; 5 0 ,) T s



51

OUT IN

1. TOP: Root of a given tree

2. 2. TRIAL-PTR: Address of the given token list.

5. COHPAUL: Returned the result of comparison.

3. SURCI: Returned address of the tree node that matches or trial-pointer.

4. RVL : The address of the tree node co be compared.

Module: INSERT

Functional Descrition:

This subprogram inserts a new token into the given tree.

Subprocesses:

1. Compare the given token string with the character string associated with

the tree node (COMPARE).

2. Insert the new token in the tree.

Interface:

S C- N' ' )k<"1

S C0 1'N R A NDO 1I T E R

C.4

RN Tkr4



ow

t OUT IN

1. TOP: Root of a given tree.

2. 2. TOKE: Pointer to the current token list.

4. COMPARE: Returned result of comparison. I
3. HELP: Pointer to the tree node to be compared.

5. SAVE: Tree node address of insertion

Module: COMPARE

Functional Description:

This subprogram compares the character string contained in two given

token list structures. It returns "GT" if the first character string is

lexically of higher order than the second one. It returns 'EQ if they are

equal and returns 'LT" if the first strin% is of lower order than the

second one.

Interface:

S U R Q H

I l C-41" P,"ArR E

OUT 1N

I. PTR-l: Pointer address to first character string

2. PTR-2: Pointer address to second character string.

3. COMPARE: returned result of comparison.



M0411: Fl3Z~x

Y untional Deacrition:

This subprogram free the storage occupied by the token list vhen the

pointer to that particular Lst is know.

ScRwkwD eUTOKSK O-P-ATR No I S O RAN) IL E FL Te . 1

1; Re E"rk N

I. STI: Poincer to the token list to be freed.

I



54

Module: COUN D

Functional Description:

This module scans the Data division of a COBOL program. Each

occurrence of a token is classified on the basis of the counting strategy

defined in INITIAZ, and the frequency counts of each unique operator and

operand is updated.

Subprocesses:

1. Capture a token from the input string (GETOKEN)

2. The current token is compared with the elements of the operator tree. If

a match is found, then the current token is processed as an operator

(OPERATR). Otherwise the token is passed to step3.

3. The incoming token is comparea with the entries of the noise tree. If an

identical token exists in this tree, the current token is processed as a

noisevord (NOISE); otherwise the token is passed into step4.

4. In this stage, the current token is treated as an operand and processes

accordingly (OPERAND).

5. Stepl thru step4 are repeated until the end of the Data division.

Interface:

TO-,N %, O



IM
55

OUT IN

1. 1. TOP-6 : Root of the Operator tree for DD

2. 2. TOP-7 : Root of the Noise tree for DD

3. 3. TOP-8 : Root of the Operand tree for DD

4. CIRPTR Pointer to the entry of history list

5. 5. TOKEN : Pointer to the current token list

6. RETUrn-FLAG : Flag returned by OPERATR or NOISE

7. NEXT-CARD : Current input line image

8. CURSOR : Index to current character in NEXT-CARD

9. BUFF-CHAR : Buffer for the current token string in process

10. BUFF-PTR : Index to current character in buffer



3h

Module: GrTOKxN

Functional Description:

1. Find the first noublank character of a tokea.

2. Capture all the adjacent characters starting with the first character

until a blank is encountered.

3. If the last character of the string collected in step2 is a period, then

ignore that period.

4. Generate a linked list structure for this new token.

5. Repeat stept through step4 for the entire Data division.

Interface:

'-
'-"

C-ETOkEN

(vE 7 N 15 L k TC -

CUTOKEN -R Bp. E MEF_

OUT IN

I. 1. NEXT-CARD : Current input line image

2. 2. CURSOR : Pointer to current character in NEXT-CARD.

3. 3. BUFF-CHAR : Buffer for current token string.

4. 4. BUFF-PTR : Pointer to current character in buffer.

5. 5. KAR : Current character in process.

6. 6. TOKEN : Pointer to token list.



1
57

Functional Degcriftiou:

This module finds the first nonblank character in an input record.

StbDrocees a:

1. Check every character of the input string (starting from column 8 of the

input recrd) until the first nonblank character is encountered.

2. Return the current noublank character.

Interface:

(Er TOkE N IL

_ ;i'p
CGT N ra LK

r I

OUT M]

1. 1. NUT-CARD Current input line image

2. 2. CURSOR : Pointer to current character in N T-CARD.

3. 3. BUTT-QA : Buffer for current token string.

4. 4. BUF-FTht Pointer to current character in buffer.

5. 5% KAR : Current character in process.I



Module: GETCA.

Functional Description:

This module returns the next relevant character in the input

character stream. Characters in couments and labels, characters before

column 8 and after column 72 are considered irrelevent.

Subprocesses:

1. Increment cursor by 1.

2. Read in another card when cursor is equal to 73.

3. Skip comments.

4. Skip labels.

5. Return the character to buffer and check for the overflow of the buffer.

Interface:

OUT IN

1. 1. NEXT-CAAk: Current input line image.

2. 2. CURSOR: Pointer to the current character in NEXT-CARD.

3. 3. BUFFER: Buffer for the current token string (may be partial).

4. 4. BUFF-PTR: Pointer to the last character of the token string in

buffer.

5. 5. KAR: Current character in process.



Module: CUT Mr

Functional Description:

This module constructs a linked-list structure of a particular token

contained in the buffer area. Each node of the linked list contains only

two adjacent characters of the token.

Subprocesses:

1. Allocate a node and initialize all fields in the node. Pointer to this

node is returned to the calling module.

2. Fill up the node with first two characters of the buffer area.

3. Stepl and Step2 are repeated until all characters of the buffer are

included in the list.

4. Empty the buffer area.

Interface:
I IBLD Tkm

T; RE TkN

OUT IN

1. BUFFER: Buffer for the currently captured token string.

2. BUFF-PTR: Pointer to the last character of the above token

string.

3. TOWN: Pointer to the token list constructed.

4. HMLP: A temporary pointer which helps to hold the address of the last

node in construction of the list.



Module: RECEDE

Functional Description:

Lu processing a character string, it becomes necessary to look ahead

one or more characters. This module enables look ahead by providing a

mechanism to recover the last character(s), if necessary, in the input

string.

Subprocesses:

I. Decrement cursor by 1.

2. Decrement buffer pointer (BUFF-PTR) by 1.

Interfaces:

Cr T C r N aLD q'kN

OUT IN

1. 1. CURSOR: Pointer to the current character in input string.

2. 2. BUFF-PTR: Pointer to the last character of the token string in

buffer.



Module: OPEBAIR

Functional Description:

This function subroutine returns "true" if a match of the current

token exists in the operator tree; otherwise returns "false".

Subprocesses:

1. Search the operator tree and determine if the current token is an

operator by comparing the current token with the members of the operator

tree.

2. If the token is an operator, then increase the frequency counts of the

token by 1 and free the incoming token list structure since only one

version of the same token list is needed.

3..If the token is not an operator, return "false".

Interface:

COUNJTD

*1

OUT IN

I. 1. TOP-6 : Root of the operator tree for DD

2. 2. TOKEN : Pointer to token list in process

3. SURCR : Returned tree node address of the matched token or

"null".

4. RETURN-FLAG : Flag containing I or 0 depending on whether the current

token exists in the operator tree or not.



62

module: NOISE

functional Description:

This function subroutine returns "true" if the current token is found

to be a noisevord. Otherwise it returns "false". Noisevords are ignored

in the present analysis.

Subprocesses:

1. Search the noise tree to find whether the current token is a noisevord,

by comparing the token with each member of the noise tree.

2. If the token is found to be a oisevord then return "true" and free the

current token list; otherwise return "false".

Interface:

Ct U ~r "b D~

Cd

OUT IN

I. I. TOP-7 : Zoot of the noise tree for DD

2. 2. TOKEN : Pointer to current token list

3. SURCH : Returned tree node address of the matched token or

4. RETURI-FLAG : Flag containing "true" or "false", returned by NOISE.



Modules: OPMUMB

Fnctional Description:

This module treats every incoming token as an operand. It searches

the operand tree and inserts the incoming token into the tree only if it is

a new omebe o.

Subprocesses:

1. Search the operand tree and compare the incoming or current token vith

the members of the tree.

2. If the current token is found to be a new member, then insert this token

into the operand tree and update the frequency count.

3. If the token already exists in the operand tree, then free the token

list and increase the frequency count of the existing member by 1.

Interface:

e-C U N. -T I).

OI r -



64

OUT I

1. 1. TOP-8 : Root of the operand tree for DD

2. 2. TOK : Pointer to current token list.

3. SURCR : Returned tree node address of the matchedf token or

"NULL".

4. SAVE : Tree node address of insertion.

Module: COUNTPD

Functional Description:

It scans the procedure division of a COBOL program. Each occurrence

of a token is classified according to a counting strategy defined in

INITIAL and the frequency count of each unique operator, noisevord, or

operand is updated.

Subprocesses:

1. Capture a token from the input (BLDTKN)

2. The token is compared with entries in the operator tree. If a match is

found, the token is processed as an operator (FILTERl). Otherwise continue

to the next step.

3. The token is compared with entries in the noise tree. If a match is

found, the token is processed as a noisevord (FILTER2). Otherwise proceed

to the next step.

4. The token is processed as operand (FILTER3).

5. Repeat the above process until end of program



F__
Interface: 0

SC-N T p cm

OUT IN

1. 1. TOP-I : loot of the operator tree for Procedure division

2. 2. TOP-2 : Root of the noisevord tree for Procedure division

3. 3. TOP-3 : Root of the operand tree for Procedure division

4. 4. CIRPTR : Pointer to entry of the history list

6. 6. TOP-8 : Root of the operand tree for DD

7. DONE-FLAG : Flag returned by Filter I or Filter 2

5. TOKEN : Resultant pointer to the token list by BLDTKN

l II I I • I i liI I a



66

Module: BLDTKN

Functional Description:

It scans the source progrm input stream and captures the next token

on the basis of a set of delimeters (e.g. blank, period, coa,*,+,-,/

etc.) defined in the COBOL language.

Subprocesses:

1. If the first nonblank character of a potential token string is a period,

coa, or right parenthesis, then skip the character.

2. Capture "*" and "r

3. Capture "/',+° - , ,(

4. Capture literals enclosed by quotes (subroutine LITERAL)

5. Capture character strings delimited on the right by blank, *,/,i+,

%>%>0 " ,( " " , and -0. Embedding . or -- is alloyed.

6. Character strings of CALL ,'XRYORM ° ,*ALTER" ,'V and 'NOTE' are

processed separately by the subroutine named CALL-IT, PERFORM, ALTER, GOTO

and NOTE respectively.

Interfaces:

tte- N TP D

1 L'b T W N

k III II II III II I Ae':



r

OUT IN

1. TOP-1 : operator tree for new insertion of operator

2. 2. TOKEN : pointer to token list

3. 3. CURSOR : index to current character in NEXT-CARD

4. 4. NEXT-CARD : current input line image

5. 5. BUFFER : Buffer for current token string in process

6. 6. BUFFER-PTR I Index to current character in Buffer

7. 7. KAR : current character

8. CIRPTR : Pointer to entry of the history list

Module: FILTlE1

Functional Description:

This function subroutine returns "true" and updates the frequency

count of a token captured by BLDTKN if a match is found in the operator

tree. Otherwise it returns "faLse" for passage of the token to FILTER2.

Subprocesses:

1. Search the operator tree to determine if the token is an operator. If

it is not an operator then exit this function and return "false".

Otherwise process the token according to the following steps.

2. Increase the frequency count of this token by one, and free the incoming

token list structure since only one version of the same token list is

needed.

3. If the token found is potentially sensitive to past tokens, the history

list containing the past ten operators should be examined. If indeed the

token can affect a past token or be affected by a past token, appropriate

action should be taken to address this situation.

4. Update the history list for the new token.

5. Return 'true' to COUNTPD.



COU TD]

C

SLTGR 1

OUT IN

1. 1. TOP-i Root of the operator tree

Z. Z.. TOKEN Pointer to token list inl process

4. SUNCH Returned tree node address of the matched token or

null' for non-match

3. FILTUI1 Returned 'true' or 'false' for 'confirmed operator'- or

conftirmed non-operator'.



I
Module: FILZR2

Functional Description:

This function subroutine returns "true" if a match is found in the

noise tree. Since keeping counts of noisevords serves no purpose for the

present analysis, noisevords are not counted.

Subprocess :

1. Search the noise tree to determine if current token is a noisevord. If

it is then free the token and return "true". Othervise return "false".

Interfaces:

SV R CH

9'RE F-Tr r

OUT IN

1. 1. TOP-2 : Root of the noise tree

2. 2. TOKEN : Pointer to token list in process

4. SURCH : Returned tree node address of the matched token or

"null' for non-match.

3. FILTU2 : Returned "true" or "false" for confirmed noisevord or

confirmed nonnoisevord

I I I I - , nm,1|II I 1 ij



Module: FILTZL3

Functional DescriDtion:

It treats every incoming token as an operand. Most operands have

been defined in the operand tree for the Data division. Therefore the DD

operand tree is searched first to avoid duplicate representation of a

unique token. The PD operand tree is searched next and only new operands

are inserted into this tree.

Subprocesses:

1. Search the DD Operand tree to determine if the token has been declared

in Data division. If it is, free the token list and use the one already in

Use.

2. Search the PD operand tree to determine if the token is already in the

tree or not. If it is not, insert the token into the tree.

3. Increase the frequency count by 1.

Interface:

OUT IN

1. 1. TOP-3 : Root of the operand tree

2. 2. TOKEN : Pointer to token list

3. TOP-8: Root of the operand tree for DD.

4. SURCI: Returned tree node address or "null" for unmatched token.

5. SAVE: Tree node address of insertion.



I 71

Module: STAT

Functional Descriytion:

This module produces readable printouts for all the parameters of

software science.

Subprocesses:

1. Sort the operator and operand trees of both data and procedure divisions

so that the tokens are arranged in order of frequency counts. Also

calculate the number of unique operators/operands and the total number of

operators/operands during the sort process (REORDER and SORTS)

2. Compute the values of all software science metrics (SOFTHET)

3. Generate seperate files containing the detailed information (e.g.

frequency distribution of all tokens, suinary record for each division) for

data and procedure divisions, as well as for the whole program (PRNTWID)

4. Use the files generated in step 3 to print out the appropriate report

(REPORT)

Interface:

e- N -rVCrM

I-

IRS OgD E- P- 
,T 

'5C 7TM ET

-- ---- --



OUT IN

I I. TOP-6: Root of DD operator tree.

2. 2. TOP-6: Root of PD operator tree.

3. 3. TOP-3: Root of PD operand tree.

4. 4. TOP-8: Root of DD operand tree.

5. Lab-ID: 2-digit Lab-ID (required only for student's job)

6. AUTHOR-ID: 4-digit author ID (required only for students' job)

7. 7. TOP-9: loot of the frequency tree of DD operator

8. 8. TOP-4: Root of the frequency tree of PD operator.

9. 9. TOP-5: Root of the frequency tree of PD operand

10. 10. UNIQUE: Number of unique operators/operand

11. 11. OCCURRENCE: total number of operators/operands.

12. 12. EOS: Number of statements in data/procedure division

13. 13. TOP-10: Root of the frequency tree of DD operand.

14. ET_2-INTERSECT: Coion elements between DD and PD operand trees

15. N: Program length

16. ETA: Vocabulary

17. NH: Estimated program length

18. V: Program volume Software Science

19. LI: Program level Metrics

20. LAMBDAH: Language level

21. INTELL: Intelligence content

22. EFFORT: Programming effort

23. 23. SYSUTO: File containing summary record and frequency counts of

Data division.

24. 24. SYSUTI: File containing summary record and frequency counts of

Procedure division.

26. 26. FINAL output of the Analyzer

25. SYSUT2 : File containing the sunmary record for the whole program



Module.: REORDER

Functional Description:

This module sorts (according to frequency counts) the operator tree

and the operand tree of the procedure division as well as the operator tree

of the data division. It also finds the number of unique operators

(operands) and total number of operators (operands) while sorting the

trees.

Subprocess:

l.Traverse the operator/operand trees using a postorder traversal algorithm

2. The visited node is pruned from the original tree and is inserted into

the frequency tree, in which all the tokens are arranged in sequential

order of frequency.

Interface:
S-TAT

In

-4 c

INSE1RTZ}

I

OUT IN

1. 1. ROOT: Root of the given tree

2. 2. FREQ-TOP: Root of the frequency tree

3. UNIQUE # of unique operators/operands

4. OCCURENCE: total # of operators/operands

5. EOS: # of statement in Data division/Procedure division



Module: INSEUT2

Functional Description:

This module inserts the tree node carried by 'root' into the

frequency tree topped by "Freq-top'. The insertion procedure of this

routine differs from that of INSUT in the following ways.

(a) The sort key is the frequency count and then the character string of

the token.

(b) The inserted unit is a tree node instead of token pointer.

(c) No storage allocation is needed. In other words, building the

frequency tree does not require extra storage.

Subyrocesses:

1. Use the root of the original tree as the top of the frequency tree.

2. If the frequency count of the next vistited node is treater than the

frequency count of the frequency top, go to the right and insert the

current node into the frequency tree if right pointer is null.

3. If the frequency count of the next visited node is Less than that of the

frequency top then go to the lefc node. If the left pointer is null then

insert the current node into the frequency tree.

4. If the frequency count of the next visited node is equal to the

frequency count of the frequency top, then insert the current node

depending on the lexical order of the token strings.



75

Interface:f

~tf IsE F T 2..

'A(C

OUT fI

1. ROOT: loot of a given tree.

5. COMPARE: Returned the result of comparison

between the token strings.

2. YREQ-TOP : Root of the frequency tree

3. 9VT-l : Pointer to character string 1

4. 2 :2 Pointer to character string 2



72

Modula: SOaTS

Functional Decription:

This module sorts the operand tree of the Data division. It also

finds the total number of comon operands between the Data and Procedure

divlsionh.

Subprocesses:

1. For each token in the DD operand tree, search the operand tree of the

procedure division to find if the current token of the DD operand tree also

exists in the operand tree of the Procedure division.

2. If the current DD operand also exists in, the operand tree of the

Procedure division, then the number of comon tokens is incrmented by 1.

3. Stepl and Step2 are carried out for all the tokens in the DD operand

tree.

4. Sort the DD operand tree using the same procedure as the ZORDfl

routine.

Interface:

-T A--T

U R,_ H

ill ~ ~ ~ ~ ~ ~ K, II IFI II l 1 I II II2II



77

OUT 3

1. 1. OP-8 : loot of the operand tree of DD

2. 2. TOP-3 : loot of the operand tree of PD

4. SURCI : Returned address of the matched tree

node or 'null'

5. 5. MP-O : Root of the frequency tree of DD

operand

3. T TR Pointer to current token in DD operand tree

6. TA2-INTERSECT : Comon operands between DD and PD operand trees.

7. UNIQUE : Number of unique operators/operands.

8. OCCURENCE : Total number of operators/operands.

Module: SOFMT

Functional Description:

This routine produces the final values of all the softvare science

metrics for Data and Procedure divisions.

Int'erface:

A 7

MC,-



OUT IN

1. UNIQUE: Number of unique operators/operands for

Data or Procedure division.

2. OCCURRENCE: Total number of operators/operands for

Data or Procedure division.

3. N: Program length

4. ETA: Vocabulary

5. NKE: Estimated program length

6. V: Program volume

7. LH: Program level Software Science

8. LANDAB: Language level Metrics

9. INTELL: Intelligence content

10 EFFORT: Programing effort

Module: PRNTWID

Functional Description:

This module generates files containing the frequency distribution of

all the tokens in both Data and Procedure divisions.

Subprocesses:

1. Traverse the operator/operand tree using an inorder traversal algorithm.

2. Construct records containing the frequency distribution of the tokens



lnterf ace,:

ST4r-II

OUT IN

1. 1. TOP: Root of a given frequency tree

2. 2. SYSUTO : File containing frequency distributions of tokens

in Data division.

3. 3. SYSUT1 : File containing frequency distributions of tokens

in Procedure division.

4. W-EEC: 80-character record of SYSUTO or SYSUTI.

1



80

Module: TRAVESE

Functional Description:

This recursive subroutine is used to traverse a particular frequency

tree and produces records of the file SSUTO or SYSUT1

Subprocess:

1. At every node of the frequency tree, find the frequency counts of he

token and vrite 80-character record (NODE- OUT).

Interface:

'R I",'W P D

"TgA-V -R.s;

NrO bS- * V-v

OUT IN

I. TOP : loot of a given frequency tree

3. PW-REC : 80 character record of SYSUTO or SYSUT1

2. TREE-NODE : Node unit of the operator/operand tree

4. SYSUTO : File containing information for Data division

5. SYSUT1 : File containing information for Procedure division



Module: NOD--OUT

Functional Description:

Given a frequency tree node, this subroutine finds the frequency

count of the token. It also writes 80-character record of STSUTO/SYSUTI.

Interface:

S teI

OUT IN

1. TIRM-NODE: Node unit of the operator/ operand tree.

2. NW-REC: 80-character record of SYSUTO or SYSUT1



82

Module: REPORT

functional Description:

This module produces well documented output, produced by the

analyzer, for a COBOL program.

Subproceases:

1. Read the files SYSUTO, SYSUT1 and SYSUT2.

2. Use SYSUTO to produce the frequency distribution of the tokens

as well as software metrics for the Data division.

2. Use SYSUT1 to produce the frequency distribution of the tokens

as well as software metrics for the Procedure division.

3. Use SYSUT2 to provide the software metrics for the entire program

4. Print all the information of steps 2, 3, & 4.

Interface:

STAT

edT

4I,

.... .~ ~ ~ ~ ~ ~ ~ ~~~---- -- --.. .. i- I iii .. . ' , 1,-



I OUT I

1. 1. SYSUTO : All the information for DD

2. 2. SYSUT1 : All the information for PD
3. SYSUT2 : Smayrecord for the pori

5. WIDIPLA O utput line of 133 char~acters8

I 6. BUFFUDO :Buffer containing token strings of DD

7. FW0 : Frequency counts of tokens in DD

8. BUFFER Token strings of PD

9. M1 Frequency counts of tokens in PD

4. BODY : Information to be printed.

10. Final Output of the Analysis.

Module: Printl

Functional description:

This routine prints each output line of the final report.

Interface:

1. BODY: Information to be printed.

II 2. WIDIPLA: Output line of 133 characters.



b4

-modul: GNTOKO

FuncioBl Description:

It reads the file named SYSJTO, transfers characters from the input

string into the buffer and also captures the frequency counts of the

corresponding token string.

Interface:

1z PCCRT

6-Cr TkOK%

OUT IN

1. SYSUTO: file containing the information of DD.

5. [AR: Current character in process.

Z. BUFFERO: Buffer containing the token string of DD.

3. FIEQO: Frequency counts of the token.

4. INPUT-RECO: Each record of SYSUTO.



85

Houle: GZTEABIJ

Functional Description:

I Given each record of the file STSW?0, this routine captures one

character at a time until the end of record is encountered.

Interface:

OUT IN

1. InPUT-RECO: Each 80-character record of SYSUT.

2. KAR: Current character in process.

odule: GETOKI

Functional Description:

It reads the file named SYSUTI, transfers characters from the input

string into the buffer and also captures the frequency count of the

associated token string.

Interface:

1.A



86

OUT 33

1. SYST1: File containing the information of PD.

5. KAR: Current character in process.

2. BUFFS : Buffer containing the token string of PD.

3. FUQI: Frequency count of the token.

4. INPT-IEC1: Each record of SYSUT1.

Module: GE=AR1

Functional Descriptiou:

Given each record of the file SYSUT1, this routine captures one

character at a time until the end of record is encountered.

Interface:

Cr E rO 1k

C- -T k AV,

OUT IN

1. LFUT-IECl: Each 80-character record of SYSUT1.

2. KAR: Current character in process.



APPENDIX - B

FILE DESCRIPTIONS

This appendix contains the operator and noiseword file listings used

when the analyzer is run in default mode. Files for both Data and

Procedure divisions are included. The members of these operator and

noiseword files (B.1 to B.4) are used to construct and initialize the

fundamental data structures, namely the operator and noise trees, used

in analyzing a COBOL program. Finally, the production JCLs to run the

analyzer are shown.

I



B.1 : DEFAULT OPERATOR FILE FOR DATA DIVISION (OPERO)

1. o

2. FD
3. LABEL
4. BLOCK

5. OMITTED
6. DATA
7. STANDARD
8. VALUE
9. LINAGE
10. FOOTING
11. TOP
12. BOTTOM
13. CODE-SET
14. RECORD
15. RECORDING
16. REDEFINES
17. PICTURE = PIC
18. USAGE
19. SIGN
20. LEADING
21. SEPARATE
23. OCCURS
24. TO
25. DEPENDING
26. ASCENDING
27. DESCENDING
28. INDEXED
29. SYNCHRONIZED SYNC

30. JUSTIFIED - JUST
31. BLANK
32. RENAME
33. THRU
34. TIMES
35. DISPLAY
36. COMPUTATIONAL - COMP
37. COMPUTATIONAL-i = COP-1
38. COMPUTATIONAL-2 = COMP-2
39. COMPUTATIONAL-3 - COMP-3
40. LEFT
41. RIGHT



AD-AI30 899 A SOFTWARE SCIENCE ANALYZER FOR COBOL-REVISION(U) OHI 2/STATE UNIV COLUMBUS COMPUTER AND INFORMATION SCIENCE
RES. K CFUN ET AL 1982OSU-CSRCTR-83-2REV

UNCLASSIFIED ARO-1750.3-E DAAG29-80-K 0061 F/ 09/2



I I -

32 2 2

''IIIl

1l' 
1.85

1151 11. 11

V 1 ( N

N i iT



89

B.2 DEFAULT NOISEWORD FILE FOR DATA DIVISION (NOISEO)

1. ARE
2. Is
3. ON
4. BY
5. REPORT
6. LINKAGE
7. WORKING-STORAGE
8. FILE
9. CONTAINS
10. MODE
11. CHARACTERS
12. CHARACTER
13. LINES
14. WITH
15. AT
16. KEY
17. WHEN
18. DIVISION
19. SECTION

L !_ _ _ _ _ _ _ _ _ _ _



B.3 DEFAULT OPERATOR FILE FOR PROCEDURE DIVISION (OPERI)

2. (
3. +

4. /
5. .MOVE
6. .DIVIDE
7. .REWIND
8. .CLOSE
9. .SORT
10. .EXIT
11. .RELEASE
12. .ACCEPT
13. .SUBTRACT
14. .COPY
15. .SEARCH
16. .GOBACK

17. .RESET
18. .READ
19. .ELSE
20. .UNSTRING
21. .ADD
22. .WRITE
23. .CANCEL
24. .STOP
25. .COMPUTE
26. .SET
27. .DISPLAY
28. .REWRITE
29. .ENTER
30. .RETURN
31. .EXAMINE
32. .READY
33. .IF
34. .OPEN
35. .INSPECT
36. .MULTIPLY
37. AND
38. WHEN
39. FOR
40. GIVING
41. EXCEPTION
42. NOT
43. EXTEND
44. FILE
45. FIRST
46. 1-0
47. POSITIONING
48. REEL
49. REPACE
50. UP
51. POINTER
52. TALLYING



91

53. DELIMITED
54. DEPENDING
55. DISP
56. LEADING
57. BEFORE
58. ERROR
59. TIMES
60. END
61. TRANSFORM
62. UNTIL
63. INTO
64. INVALID
65. REMAINDER
66. BEGINNING
67. COUNT
68 EXHIaIT
69 NEXT
70. UNIT
71. UPON
72. LOCK
73. USE
74. USING
75. VARYING
76. OR
77. REMOVAL
78. MERGE
79. DOWN
80. SUPPRESS
81. ENDING
82. ENTRY
83. OUTPUT
84. AFTER
85. ALL
86. REPLACING
87. ROUNDED
88. SEQUENCE.
89. START
90. STRING
91. INPUT
92. CHANGED
93. CHARACTERS
94. NAMED
95. BY 4 REPLACE < UP < DOWN < DELIMITED
96. PROCEDURE < LABEL
97. FROM > CHARACTERS
98. CORRESPONDING - CORR
99. TO < EQUAL < PROCEED
100. ERROR > SIZE > ON
101. ON < DEPENDING
102. ELSE - OTHERWISE
103. TO < PROCEED
104. ON < OUTPUT < INPVT < 1-0
105. DESCENDING > ON
106. GREATER -



107. MD-OF-PAGE-EOP 92

108. EQUAL-n
109. PROCEED < TO
110. LESS - <
111. PROCEDURE > OUPUT > INPUT
112. ALL > SEARCH
113. OVULOW > O
114. ASCUDING > ON
115. THROUGH - TMR

Note that the minus sign is not included in this list since it is

indistinguishable in form from a hyphen. The analyzer resolves this

ambiguity by context. Other context sensitive operator information

appears explcitly in the action at the end of the file.



93

B.4 DEFAULT NOISEWORD FILE FOR PROCEDURE DIVISION (NOISE1)

1.

2. THAN
3. )
4. THEN

6. ADVANCING
7. AT
8. LINES
9. RUN
10. IS
11. SKIP1
12. SKIP2
13. SKIP3
14. EJECT

B.5 : File, INITW, which generates output for production purposes (see
WIDJET in B.9).

1. MODE - 'PRODUCTION'
2. GO
3. PERFORM
4. CALL
5. ALTER
6. NOTE
7. -

8. PROCEDURE
9. PROGRAM-ID
10. DATA
11. $JOB
12. IDENTIFICATION



94

B.6 File, INITR, which generates output for debugging purposes (see
OSUCNTPM).

1. MODE- 'DEBUG'
2. GO
3. PERFORM
4. CALL
5. ALTER
6. NOTE
7. -
8. PROCEDURE

9. PROGRAM-ID
10. DATA
11. $JOB
12. IDENTIFICATION

Note: 'PRODUCTION' is the production mode, which generates the regular

output (see section 3.3). On the other hand, *DEBUG' is the debugging

mode. Its output consists of a trace of input stream tokens helpful for

debugging purposes. The output of this mode is different from that

obtained in production-mode.

B.7 : PRODUCTION JCL (OSUCNTPM)

1. EXEc PG-osUCNTPN
2- //STEPLIB DD DSN" TS0618.LOADLIDISP-SmR
3. //OPER DD DSN-TS0618.CSLIB(OPERI),DISP-OLD, UNIT=USERDA
4. //OPER2 DD DSN-TS0618.CSLIB(OPERO) DISP-OLD,UNIT-USERDA
5. //NOISE DD DSN-TS061S.CSLIB(NOISE15,DISP-OLD,UNIT USERDA
6. //NOISE2 DD DSN-TSO61S.CSLIB(NOISEO),DISP=OLD,UNIT-USERDA
7. //INIT DD DSN-TS0618.CSLIB(INITR),DISP-OLD,UNIT-USERDA
8. //SYSPRINT DD SYSOUT-A
9. //WIDIPLA DD SYSOUT-A
10. //WIDSUMO DD DUMMY
11. //WIDSUIM DD DUMMY
12. //WIDSUM2 DD DUMMY
13. //WIDFREQ DD DUMMY
14. //SYSUTO DD DSN-TS0618.CIS2212.SYSUTO,UNIT-USERDADISP-OLD
15. //SYSUT1 DD DSN=TS0618.CIS212.SYSUT1,UNIT=USERDA,DISP=OLD
16. //SYSUT2 DD DSN-TS0618.CIS212.SYSUT2,UNIT-USERDA,DISP=OLD

This JCL invokes the analyzer and generates hard copy of the analysis

report, but does not store the analyzer output into a separate disk

file for future use.



B.8 :JCL FOR INVOKING WIDJET (INTERNAL)

1. /1 EXEC PGII=IEBGENER
2. //SYSUT2 DD SYSOUT=(AvINTRDR) PDCB=(RECFM=FB,LRECL=8OBLKSIZE=0O)
3. //SYSPRIf4T DD SYSOUT=A
4. //SYSIN DD DUMMY
5. //SYSUT1 DD DSN=TS0618.IIDJETDISPOLDUNIT=USERDA
6. 1/ DD DDNAMtE=PROGRAM

This JCL file called INTERNAL is used to invoke the production JCL

required to run the analyzer through the on-line terminal. In

particular, WIDJET or WYLEUR users invoke INTERNAL, which in turn

invokes the JCL file called WIDJET through the internal reader.

B.9 :PRODUCTION JCL (WIDJET)

0.01 //COUNTPGM JOB 'FRBQO,212313O190','ANALYZERP C.
0.02 /*JOBPARM V=D
0.03 Ii EXEC PGM=OSUCNTPM
0.04 //STEPLtB DD DSN=TS0618.LOAD'LIBrDISP=SHR
0.05 //SYSPRINT DD SYSOUT=A
0.09 //WIDIPLA DD SYSOUT=A
0.14 //OPER DD DSN=TS06l8.CSLIB(OPER1),DISP=OLDvUNITUSEE'A
0.15 //OPER2 DD DSN=TS0618.CSLIB(OPER0),DISF=OLDPUNIT=USERDA
0.16 //NOISE DD DSN=TS0618.CSLIB(NOISEI),DISP=OLDUNr=USERDA
0.17 //NOISE2 DD DSN=TS0618.CSLIB(NOISEO)PDISP=OLDUNIT=USERDA
0.18 //INIT DD DSN=TS061B.CSLIB(INITW),DISP=OLDUIT=USERtA
0.21 //WIDSUMO DD DUMMY
0.22 //WIDSUM1 DD DUMMY
0.23 //WIDSUM2 DD. DUMMY
0 ..24 //UIDFREG DD DSN=1*S0618.CIS212.FREQvUNIT=USERDAPDISP=(MODIYCATLG),
0.241 /1DCB=(RECFM=FBLRECL=B0,BLKSIZE=80,DSORG=PS),
0.242 1/SPACE=(TRKP(50r20))
0.25 //SYSUTO DD DSN=TS0618.CIS212n.SYSUTOPUNIT=USERAE'ISF=OLlI
0.26 //SYSUT1 DD rBSN=TS061.CIS212.SYSUT1,UNIT=USERDAPDISP=OLD
0.27 //SYSUT2 DD DSN=TS0618.CIS212.SYSUT2tUNIT=USERDAPDISP=Ll

0.28 //SOURCE DD



96

This JCL file called WIDJET is used to run the analyzer and to collect

Software Science data from student COBOL programs at Ohio State

University. One should note the file 'FIDFREQ' and its parameters.

In particular, DSN - TS0618.CIS212.FREQ gives the file name on the

disk where all the data from the analyzer is to be collected, and the

SPACE parameters provides sthe primary and secondary storage

allocation for this disk file. In the present case, the primary

storage allocation for TS0618.cis212. would be 50 tracks and the

secondary allocation is 20 tracks (up to 16 extent).



B. 10; THE EXEC PROGRAM INVOKED BY THE "ANALYZE" COMMAND 97

SET EXEC NOLOG TERSE
ON ERROR
ON ATTN
SET VALUE SO LAST
IF ( SO EQ 0.000) EXEC 11.01
COMMENT S22s2:* s S*****2* s22*S***E
COMMENT THE ACTIVE FILE MUST BE EMPTY TO RUN THE
COMMENT ANALYZER. TRY AGAIN AFTER SAVING THE FILE IF
COMMENT NEEDED AND ALSO CLEARING THE ACTIVE FILE.
COMMENT 2SS2: gss~**zg zs $zg****:s**2:gzs*2::*~*
EXEC 54
COMMENT
COMMENT WHICH COURSE IS THIS(212 OR 313)?
READ STRING SO
IF(SO EQ '212') EXEC 12
IF(SO EQ '313') EXEC 61
EXEC 11.01
CLEAR ACTIVE
SET ESCAPE I
COMMENT WHICH OF THE FOLLOWING LAD NUMBERS DO YOU WANT ANALYZED?
COMMENT
COMMENT 02 03 04 05 06
COMMENT
READ STRING Sl
IF(S1 EQ '02') EXEC 28
IF(S1 EQ '03') EXEC 28
IF(S1 EQ '04') EXEC 29
IF(SI EQ '05') EXEC 28
IF(Sl EQ '06') EXEC 28
COMMENT
COMMENT *****INVALID LAB NUMBER*Z*****
COMMENT
COMMENT PLEASE RE-ENTER THE LAB NUMBER AGAIN.
EXEC 14
SET VALUE S2 SUBSTR(GROUP,3,1)!!USER
COMMENT WHAT IS YOUR LAST NAME?
READ STRING S4
COMMENT WHAT IS THE NAME OF YOUR LAB FILE?
READ STRING S3
IF ( VERIFY(S3,'t') EQ 2 ) COPY FROM IS3 TO 10 BY 10
IF ( VERIFY(S3,'e') EQ I ) COPY FROM #IS3 TO 10 BY 10
POINT ' JOB '
IF (CURRENT LT 0) EXEC 40
SET VALUE WI=S
POINT "sjOB'
SET-VALUE-W2-*
DEL &W1/1W2
POINT '// "
IF (CURRENT GT 0) EXEC 44
SET VALUE W3=
99999.99 //
0.001 // JOB
0.002 /*JOBPARM V-0
0.003 //PROCLIB DO DSN-TSO61B.PROCLIB
0.004 // EXEC INTERNAL
0.005 //PROGRAM DD X
0.006 SJOB 191S12 IS4
RUN

COMMENT LAB 1S HAS BEEN ANALYZED UNDER THE TC1S2 NUMBER.
SET ESCAPE ""
CLEAR ACTIVE
CLEAR EXEC
CLEAR ACTIVE
SET ESCAPE &
COMMENT WHICH OF THE FOLLOWING LAB NUMBERS DO YOU WANT ANALYZED?
COMMENT
COMMENT L1 L2 L3
COMMENT
READ STRING St
IF(S1 EQ 'LI') EXEC 29
IF(S1 EQ 'L2') EXEC 29
IF(S1 E 'L3') EXEC 28
COMMENT
COMMENT SS**E INVALID LAB NUMBER****2 *
COMMENT
COMMENT PLEASE RE-ENTCR THE LAB NUMBER AGAIN.
EXEC 63



B.11: SAMPLE HANDOUT 98

CIS 212

Instructions to run the Analyzer

Run your final version of the program to get the printout for submission. AFTER YOU GET

THE FINAL AND CORRECT OUTPUT, USE THE FOLLOWING STEPS TO RUN THE ANALYZER.

1. Clear your active file by using the Command: CLEAR ACTIVE

2. Type the following command:

Command? ANALYZE

After you have typed the ANALYZE command and pressed the RETURN key, you will be asked
the following questions. Simply insert the answer to these questions.

Questions would be asked Answers to be submitted

a. What course is this? (212 or 313) a. Enter 212

b. Which of the following lab numbers
do you want analyzed? b. If you want to analyze Lab2, Type 02

If you want to analyze Lab3, Type 03
02 03 04 05 06 If you want to analyze Lab4, Type 04

If you want to analyze Lab5, Type 0.5
If you want to analyze Lab6, Type 06

c. What is your Last Name? c. Enter your Last Name

d. What is the name of your Lab file? d. Enter the actual file name that you
have used to save your Lab.
(For example, if you are analyzing

Lab2, and the actual file name fnr
Lab2 is PROG2 then enter PROG2).

After you have answered these questions, wait till you get the following message:

LAB (02 or 03 or 04 or 05 or 06) HAS BEEN ANALYZED UNDER THE TRnnnn NUMBER

Where nnnn is the 4-digit number of your personal user-id. As soon as you get this message,
you are done with the analyzer.

If you have any question, comment or difficulty, please see your instructor or Mr. DEBNATH
in CL 418.

THANK YOU and GOOD LUCK



APPENDIX - C

Maintenance Procedure

The Software Science COBOL Analyzer developed at OSU is a significant

component of the Software Metrics Research Group in the Department of

Computer and Information Science. The Analyzer is used to collect data

from the students of undergraduate COBOL classes (e.g. CIS212, CIS313),

needed to pursue further research in Software Science. In addition to the

students' programs, various kinds of COBOL programs are also collected for

analysis from the University Systems Computer Center as well as from other

organizations. Therefore, the person responsible for maintaining the

Analyzer has direct interaction with many different groups of people. The

present section provides a few of the major steps to be followed for

maintenance of the Analyzer. Particular attention is given to its

interface with undergraduate COBOL classes.



Procedure:

I. It is important to become familiar with the vorking of the analyzer

program as well as to know how to use the analyzer in the OSU environent.

2. The handout containing the necessary instructions to run a job through

the analyzer should be provided to each student at the beginning of the

quarter (see sample handout in Appendix-B)

3. CREATE THE DISK SPACE

Before the students start running their jobs through the analyzer,

space should be created on the disk in order to collect the students'

output from the analyzer. Currently the disk file called "CIS212.FEEQ" is

used for this purpose. The disk space for the file 'CIS212.FEEQ' is

created according to the SPACE parameter used in the JCL file called WIDJET

(see Appendix-B); e.g.

SPACE - (TEK, (50,20)) , DISP - (MOD, CATLG)

Thus, the size of this disk file can be changed simply by changing the

SPACE parameter as desired.

4. ARCHIVE THE DATA ON THE DISK

Disk space is very expensive and the collected data on the disk is

not usually used during the quarter. Therefore, these data must be

archived to tape using the ASM2 commands [IRCC ASC2 Manual] quite

frequently. It is strongly suggested that every 50-100 tracks of data

should be archived to tape. The archive commands, $AR, provides the user

vith the ability to archive the specified data set(s) to tape.

Example : $AR "DSLIST"

"DSLIST is the list of input data set names



5. ASSIGN APPROPRIATE NAME AND MAXIMUM RETENTION PERIOD FOR THE FILE TO BE

ARCHIVED

While archiving the data from the disk, the file should be assigned a

name which is different from the original disk file name and from any

previously archived file name. The new file name should reflect the name

of the quarter when the data was collected. This helps recognize the file

easily when using it after a long period of time. One should also specify

the maximum retention period (e.g. 365 days) for the file being archived to

tape.

The archive command [asm2 Manual] to be used in order to satisfy the

requirements of step4 and 5 has the following syntax.

SAR "DSLIST' RETPD (INTEGER') QUAL ('QUALIFIER')

Operands:

"DSLIST" - List of input data set names.

RETPD ('=NTEGER')

- Specifies the desired retention period on tape

- 'INTEGER" - a I to 3 digit value which defines the number of days the

user wishes to have the specified data set retained on archive tape.

QUAL "QUALIFIER")

- causes the data set to be renamed when archived

'QUALIFIER' - a 1 to 8 character string in which the first character must

not be numeric.

Example:

SAR CIS212.FREQ RETPD (365) QUAL(FALLI981)l
I



This example illustrates that the disk file named CIS212.FREQ would be

archived to tape with a new name CIS212. FALLl981.FR.EQ, and that a 365 day

retention period would be in effect.

6. RETRIEVE THE ARCHIVED DATA SET AND PRODUCE QUARTERLY REPORT.

At the end of the quarter, the data collected for the entire quarter

should be restored on the disk to produce two different quarterly reports.

The first report provides information concerning which students have run

which course labs through the analyzer. This report can be provided to the

instructors of the course in case course grades are influenced by the

students' use of the analyzer. The second report sa-arizes the Software

Science metrics collected for all the programs during the quarter, and is

used by the software metrics research group.

Both reports require some sorting of the data. The procedure for

producing the reports is described below.

(a) The sort keys for the first report is as follows

Keyl : Students account number

Key2 : Lab number.

It is desirable that each page of this report contain the account number of

a particular student and the lab numbers which were run by this student

during the whole quarter. This format makes it easier for the course

instructors to use this information for grading purposes. Presently, a

program called "BONUSREP" generates this report. This report should be

distributed to all the course instructors before the final examination

begins.



(b) The second report should be sorted according to lab numbers so

that all the data for each lab appear together. This makes the

analysis convenient. Currently, a program named "REP" is used to

produce this quarterly report.

The ASK2 command $RA (Reload from Archives) can be used to restore an

archived data from an archived tape to an on-line disk pack, and has the

following syntax.

$RA "DSLIST'

Example:

$RA CIS212.FALLI91I.FREQ

The use of this reload command will allow the desired data sets to be

reloaded into the disk. After transfering all the required data to the

disk, the programs "REPBONUS" and "REP" can be run on these data for

producing the above repbrts.

The following wylbur commands are used to run "REP" and "REPBONUS".

Command? SET GROUP TSI

Command? SET USER 483

Command? USE REP (or REPBONUS) ON CATLG

Command? RUN

I1



7. FREE UP THE UNNECESSARY DISK SPACE.

After producing the quarterly reports, all disk spaces must be freed

as quickly as possible, either by scratching all the data sets or by

archiving these back to tape depending on whether a copy of the data sets

already exist on tape or not.

The following Wylbur command is used to scratch a data set from the disk.

Command? SCRATCH (Data set name)

The same $AR command, as discussed above, is used to archive the data set

to tape.

Note that maintenance of the analyzer involves handling a large number

of important files existing on disk as well as on tape. In order to

maintain these files efficiently, one should remember that only those files

which are used very often should be kept on disk; other files should be

saved on tape. The retention period of all files on tape MUST be checked

periodically by using the $AI (Archive Catalog Information) Command [ASM2

Manual], and the expiration date must be updated if necessry. Another

possibility is that the data can be saved on a personal tape. Otherwise,

it is possible that important data will be lost.

Finally, the programs collected from sources other than OSU courses

should be run through the analyzer using the necessary JCL, and the output

should be saved on separate files, if possible. The present JCL called

"JCLTAPE" is used to run the programs that are collected from the

University Systems Computer Center and from other organizations. The

output from the analyzer is collcted on the separate disk file called

"US.FREQ". Since the source programs for these analyses exist on a



1 105

1 personal tape, it is possible to scratch the disk file rontaining the

results of the analyses after producing the final report (report #2

described earlier in this section). NO archiving of the analysis data is

necessary for these progrms.

I



APPENDIX - D

INVOKING THE PURDUE ANAL'I El AT IR.CC

D.1: JCL REQUIRED TO RUN TRE PURDUE ANAMLR.

For comparison purposes a COBOL analyzer written at Purdue University can

be run at the IRCC of Ohio State University using the following JCL.

//JOB'
//REGION-512K
/*JOBPAjjf LINES-7000 ,DISKIO-5000
//SA EXEC COBSORT
//COB.SYSIN DD*

CTS1483 .COBOL.KEMWORD.FILE file)

//GO.SORTFIL DD UNIT-SYSVIOSPACE (CYL(l,1))
//GO.KEYWD DD DSN-TS1483 .KEYORDS.DAT,

UNIT'USRDADISP-(IEV, CATLG),
SPACE'm(CYL,(l,l)),
DCB-(RECFM'FB , .ECL-3O,BLKS I 1i300)

//SECOND EXEC COBUCG, TfhM-10
IICOB.SYSIN DD*

(TS1483.PURDUE.COBOL.ANALZZ file)



I

1:7

//GO.SYS I DD

(COBOL program)

/*

//GO.KEYWD DD DSN-TS1483.KEYWORDS.DATA,UNIT-USERDA, DISP-SHR
//GO.OUTPUT DD SYSOUT-A
/ /DCB-(RECFM-FBA,LRECL-133 ,BLKSIZE-133)
//GO.SUMFILE DD SYSOUT-A,
//1 DCB-(RECFM-FBA,LRECL-133 ,BLKSIZE-133)

The Purdue Analyzer consists of two separate programs, namely, SORT-TAB and

ANALYZE. Both of these files have been compiled with necessary

modifications using the standard COBOL compiler at Ohio State University,

and renamed as TS1483.COBOL.KEYWORD.FILE and TS1483.PURDUE.COBOL.ANALZ ER,

respectively. The first program generates a file of predefined COBOL

keywords and noisewords, while the second program analyzes any COBOL source

program given as input using the counting strategy defined by the first

program.

One should note that the COBOL program to be analyzed should include

both the Data and Procedure divisions. Separate analyses will be done for

the two divisions, using the predefined counting strategy developed at

Purdue University.



108

D.2: OUTPUT OF TIlE PURDUE ANALYZER

The output of the Purdue Analyzer consists of the listing of the

input file followed by the statistics for the entire program. Statistics

include the list of operators and operands along with their corresponding

frequency counts for both the Data and Procedure divisions. The summary of

the basic software metrics values, namely, ETA1, NI, ETA2, N2, N, NHAT and

REL ERROR are also produced. A sample output generated by the Purdue

analyzer is included for completeness.

STATISTICS FOR THIS MODULE

DATA DIVISION

0jERATOR FREQUENCY

97

ASSIGN 4

BILOCK 1

FD 4

---------------------------------------- -----
ETA1=
Nl=

OPERAND FREQUENCY

PRINTER-FILE1 2
PR INTER-F ILE2 2
x(8) 4
CURR-DATE 2
0 13
PR-MM 1
9 10

------------------------------------------------------
ETA2-

N2 ,



1I

PROCEDURE DIVISION

.PRATOR FR QlENCY

ACCEPT 1

ADD 16

CLOSE I

MOVE 76
OPEN I

PERFORM EDIT-CHECK 1
PERFORM H FDER-PRI 1

ETA1

NI

OPERAND FREQUENCY

PRINTER-FILE1 2

' R TiE R- F I LE 2 2
31 1
1*1 1
CURRENT- DATE 1
CURR-DATE 2

I'A2
N2

ETA2 =

N2 =

DATA PROCEDURE .MODULE
%TA 1 8 31 39

NI 238 269 507
,i.rA2 74 84 94
N2 159 358 517
N 397 627 1024
,HAT 483 690 822

, EL FQ.POZ(N) 0.1780 0.0913 0.2457

I ...,... j



D.3: COMPARISON BETWEEN OSU AND PURDUE ANALYZER

The following differences have been observed between the outputs of the
two analyzers.

PURDUE OSU

DD Operator: ASSIGN and SELECT ASSIGN and SELECT
are treated as DD are not taken
operators. into consideration.
LABEL, RECORD and Instead LABEL,
STANDARD have been STANDARD are treated
skipped. as DD operators.

DD Operands: FILLER and labels FILLER, labels and
are not counted; all x(n)s are
Some x(n)'s in PIC's counted.
are not counted also.

PD Operators: Operators such as all the standard
TO, INTO, NEXT, AFTER operators are
FROM, INPUT, OUTPUT, counted; major
CORRESPONDING, EOS are differences come
skipped altogether from EOS is TO
from the operator counts. EOS is the
operand list. number of verbs.

NUMERIC is treated NUMERIC is treated
as an operator. as an operand.

EQUAL, NOT EQUAL are NOT and EQUAL are
treated as sepaxate separated and
operators. Similarly treated as two
GREATER, NOT GREATER different operators.
etc.

Instead of End of state-
ments (EOS), Purdue
counts required periods.

PD Operand counting is very comparable, except that in the OSU analyzer
there are some additional operands e.g. SENTENCE, OF.



It is noted that (1) the main difference in counts come from DD operands

and PD operators. (2) The Purdue analyzer does not count PD operators like

TO, FROM (which are used with arithmetic verbs and sometimes are not

optional e.g. in Move A TO B, TO is not optional but in A EQUAL TO B, TO is

optional; there are many such examples). OSU counts all these required

operators.

L!



RLPORT DOMAU-14 1 A'l 1U14 1% Abi) i I i I.'-,!

K.),i L. Fun 1.A2 80 K I06
N. C. ;Debnatht

% .-T I'bo NA( AL h II)

OhA State Scinvesit yz, For. COO Technical,,UU

. C. rfy eb arch OfAfic9 980 K--0 -

O Y O LI(- O FIC N ME A DSDU C, REO RTLSSFDAT O D W~.N ON

I ~ ~ ~ i16n ResearchIO OfTELN (f i R~ct

I 17 01T RESUION~T T E ENT(ofIN. ES~l dbi llorito ,~~. 1 , U.a. 0. Ill Oiffe) CLASS. if.1.hi.

14. MSUPPLEM ZZENA Y NAME A 1

Tile ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - Air 12W c~ I aJI S "I~/) i f( II' .u 1. eli i lu , It

I jUiLho r (s) ondl ,houlId not be( L0Ii,, Irueed v I.i offi cial U121ariIIefL (if thu Arit:y
)O),ii 00, )o1 icy, or deki iiJi, drl~ O(2iJIdtL(Ld by other docuwieritai. OH

19 IFY (.)WRt; (Co11till o r.orso~e jj i f 1.0 a r -1d identity1y biock titmbe)

20. AOST14ACT CVonfuma P*Vgrw.O fif~ It nse9si and Idervily by block number)

An analyzer of COBOL programs which computes the metrics from software science
is described. ;he report discusses the overall desirin of the analyzer,
including detailed description-, or each or its modules. It also containU,

instructions for the use and miaintenance of the analyzer at Ohio State Universi y.

O Am 473 oIoFFO6,USLt UNCLIV",I rI LL

.1 C IT, CLASSIFIf ATIOWN OF Toll-, PA-.l *WP,,~ 1281e Uw r



3DAT

V I


